(16x)^2+(9x)^2=30830

Simple and best practice solution for (16x)^2+(9x)^2=30830 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16x)^2+(9x)^2=30830 equation:



(16x)^2+(9x)^2=30830
We move all terms to the left:
(16x)^2+(9x)^2-(30830)=0
We add all the numbers together, and all the variables
25x^2-30830=0
a = 25; b = 0; c = -30830;
Δ = b2-4ac
Δ = 02-4·25·(-30830)
Δ = 3083000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3083000}=\sqrt{100*30830}=\sqrt{100}*\sqrt{30830}=10\sqrt{30830}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{30830}}{2*25}=\frac{0-10\sqrt{30830}}{50} =-\frac{10\sqrt{30830}}{50} =-\frac{\sqrt{30830}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{30830}}{2*25}=\frac{0+10\sqrt{30830}}{50} =\frac{10\sqrt{30830}}{50} =\frac{\sqrt{30830}}{5} $

See similar equations:

| 15x-21=8x+21 | | 8+5x=7x-16 | | 2x-4(x-2)=-7+4x-33 | | -84=9s+5s | | .08(e+2000)=3840 | | x/12+3=3/3/4 | | -6p-4p=70 | | 2b+5÷3b+4=3 | | 4x=7=x+8 | | z/8+4=32 | | -29=15+4t | | -3(b-5)=3 | | 5x+10=2x+130 | | -8c-12=-52 | | 43=4x+9 | | 6(p-2)=-30 | | u/2=11=17 | | -11=3v-8 | | 3(x-5)+1=3x-14 | | g/2+5=8 | | 14x-10+x+10=180 | | 10w=-5-4 | | 34=-4x-6 | | 6r+1=r-9 | | -6y=-5y+7 | | -8x+4=68 | | 6x-5=2x3 | | 32=5u-8 | | 3x-2=4+5x. | | -2z=-z-9 | | x=15-12 | | 10w+6=–3w–21+10w |

Equations solver categories